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Abstract—The hippocampus is a structure in the medial temporal lobe of the brain that is involved in episodic memory function. The 

texture features of the hippocampus could give better differentiation between Alzheimer’s disease and normal controls. The localization of 

the hippocampus structure in MRI histological images is considered as a multimodal global continuous optimization problem, which is 

solved by means of soft computing techniques using stochastic global optimization methods. Recently, the harmony search (HS) algorithm, 

a music-inspired optimization method, was introduced as a new soft computing rival. However, the overall performance of this algorithm is 

quite sensitive to the proper settings of its parameters prior to starting the optimization process. Many have proposed HS-based variants 

that promote self-adaptive parameter settings. In this paper we propose a new HS-based algorithm with dynamic and self-adaptive 

features. Since this work represents an early step prior to considering a full implementation on actual biomedical images, the proposed 

algorithm is tested using a multimodal global continuous optimization benchmarking problems rather than actual hippocampus biomedical 

images. Results demonstrate the superiority of the proposed algorithm against many other HS-based competing methods. 

Index Terms—biomedical imaging, computational intelligence, evolutionary algorithms, harmony search, soft computing, meta-heuristic.   

——————————      —————————— 

1 INTRODUCTION                                                                     

HE hippocampus is a structure in the medial temporal 
lobe of the mammal brain involved in episodic memory 
function. In patients with Alzheimer's disease (AD), 

smaller hippocampal volumes measured on magnetic reso-
nance imaging (MRI) correlate with worse memory function 
[1]. The hippocampus has long been known for its crucial role 
in learning and memory processes where it has recently been 
demonstrated that the volume of the hippocampus is an early 
biomarker for AD [2]. AD is a brain disorder that destroys 
brain cells, causing problems with memory, thinking, and be-
havior severe enough to affect work, lifelong hobbies, or social 
life. However, the accurate diagnosis of AD can be challeng-
ing, in particular at the earlier stage. Early diagnosis of AD 
patients is important because it allows early treatment with 
cholinesterase inhibitors, which have been shown to delay 
institutionalization and improve or stabilize cognition and 
behavioral symptoms [3]. Most biomedical image acquisition 
techniques of the hippocampus region have many problematic 
features that will hamper tasks like localization and segmenta-
tion of structure in such images. These include fuzziness of the 
hippocampus boundaries and the relatively large image size 
in addition to many others. Object detection in general would 
impose some strict requirements related to accuracy and exe-
cution speed [4].  

The texture features taken only from hippocampus gives bet-
ter differentiation between AD and normal controls. There-
fore, the textures of hippocampus are much affected by AD 
[3]. The localization of structures in biomedical images is con-
sidered as a multimodal global continuous optimization prob-
lem and solved by means of soft computing techniques [2, 4]. 
A technique used for the proper localization of the hippocam-
pus was initially presented in [4] and then used in [2]. The 
hippocampus is located by detecting, as landmarks, two re-
gions which are usually well distinguishable within the struc-
ture: the pyramidal and granule cell layers, which belong to 
the Ammon’s Horn (CA) and Dentate Gyrus (DG) regions, 
respectively as shown in Figure (1) top. 

In this technique a 2D deformable model of a section of the 
hippocampus is made to fit the corresponding region of a his-
tological image, to accurately localize such a structure and 
analyze gene expression in specific sub-regions. Once the 
model is defined, a similarity measure must also be defined 
that drives the model search towards the actual configuration 
of the object, i.e., that reaches its maximum when the image 
representation of the model is perfectly superimposed to the 
object as it appears in the image as shown in Figure (1). The 
problem then becomes a global optimization problem, that is 
the search of the model parameters, which maximize the simi-
larity measure. The landscape searched by the optimization 
algorithm is usually strongly multimodal [2]. Therefore, the 
next crucial step to be taken is the selection of a good heuristic, 
which can deal with such a rough landscape both efficiently 
and effectively. Stochastic global optimization (SGO) methods, 
such as particle swarm optimization (PSO) and deferential 
evolution (DE) have been successfully used to locate the hip-
pocampal region in biomedical images [2, 4]. However, it was 
shown in [2] that (DE) significantly outperforms other meth-
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ods including genetic algorithm (GA) and PSO. In the afore-
mentioned method, active shape models (ASM) are used 
based on deformable models in medical image analysis [5, 6]. 
The method parametrically deformed the model shape to 
match as closely as possible the shape of the hippocampus in 
the region to be located in the biomedical image used. The 
model is moved and deformed by altering its parametric rep-
resentation using an optimization heuristic, which maximizes 
a function that measures the similarity between the model and 
the object itself [2, 4]. From another perspective, the problem 
could be also considered as a minimization problem whereby 
the algorithm tries to minimize the difference between the 
model and the object itself. 

 

Figure (1) Example of a hippocampus histological image (top) 

and a hippocampus model (bottom). The dotted lines in the 

model represent the lower and upper limits for the possible 

deformation of the model [4] 

 
SGO methods such as GA are commonly used in computa-

tional neuroscience [7-9]. In order to solve global optimization 
of continuous functions, SGO algorithms proved to be effec-

tive optimization techniques as they do not require special 
conditions or mathematical properties of the objective func-
tions [10]. A recent SGO method is the harmony search (HS) 
algorithm [11], which is similar in concept to other SGO meth-
ods such as PSO and GA in terms of combining the rules of 
randomness to imitate the process that inspired it [12]. The HS 
algorithm is a relatively young meta-heuristic that was in-
spired from the improvisation process of musicians and is 
used successfully for many optimization problems with con-
tinuous design variables [12-14]. However, the algorithm ca-
pabilities are quite sensitive to the settings of its parameters 
affecting its overall performance and its ability to converge to 
a good solution [10, 15].  

In this work, the development of a new HS-based algorithm 
having self-adaptive features is introduced. The proposed al-
gorithm enables the dynamic settings of some of the important 
algorithm’s parameters using new quality measure. Since this 
work represents an early step prior to considering a full im-
plementation on actual biomedical images, the proposed algo-
rithm is tested using multimodal global continuous optimiza-
tion benchmarking problems rather than actual hippocampus 
biomedical images. Results demonstrate the superiority of the 
proposed algorithm against many other SGO methods includ-
ing recent variants of HS making it a potential candidate 
method for a hippocampus localization and detection in MRI 
histological images. 

The rest of this paper is organized as follows: section 2 
gives a background of the HS algorithm. Section 3 presents 
related works covering some recent HS-based algorithms with 
self-adaptive features. Section 4 introduces the proposed 
method along with the empirical results in section 5. Section 6 
is the discussion and the conclusions are given in section 7. 

2 BACKGROUND 

The original HS algorithm, referred to as classical hereafter, 
was introduced as an alternative optimization technique for 
linear programming, non-linear programming and dynamic 
programming [16]. The method can handle discrete and con-
tinuous variables with similar ease [11]. HS concept is based 
on the improvisation process of musicians in a band where 
each note played by a musician represents one component of 
the harmony vector. The harmony vector represents a solution 
vector x, having the size N representing all musician notes 
associated with a harmony quality value, an aesthetic meas-
ure, as shown in Figure (2). The harmony vector is analogous 
to N dimension variables and the harmony quality represents 
the fitness function f(x). The computational procedure for the 
classical HS algorithm is given in Figure (3). For a complete 
description of the algorithm refer to [11]. 

The classical HS algorithm required statically setting a cer-
tain number of parameters prior to starting the optimization 
process. However, the algorithm capabilities are quite sensi-
tive to these parameters’ settings affecting its overall perfor-
mance and its ability to converge to a good solution where 
these parameters need to be skillfully assigned in order to ob-
tain good results [17].  
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Figure (2) The harmony vector and its  

mathematical representation 

 

Figure (3) The computational procedure for  

classical HS algorithm 

3 RELATED WORKS 

Two of the HS algorithm optimization parameters, namely 
the pitch-adjustment rate (PAR) and the bandwidth (BW) are 
considered to have a great influence on the quality of the final 
solution [10]. Many recent works have proposed “self-
adaptive” HS variants that would automatically tune and find 
the best settings for these two optimization parameters achiev-
ing better results than that of the classical. However, many of 
these variants have also introduced new additional parame-
ters, which in some cases would also require an additional 
effort to set their initialization values manually prior to start-
ing the optimization process and depending on the problem 
considered. In addition, many of these rivals have forced a 
relationship between the value of these parameters and the 
current iteration count imposing a linear monotonic change 
that is bounded by a maximum integer value (MAXIMP), as in 
the algorithm of Figure (3), where this value is selected subjec-
tively by the user to signal termination. Consequently, the 
selection of such integer value would affect the whole optimi-
zation process.  

The Improved HS (IHS) [18] and Global-best HS (GHS) [19] 
were the first two early attempts to auto-tune these parame-
ters. The value of these parameters would be computed in 
every iteration based on the current improvisation rate value, 

which is bound by MAXIMP. Both of these algorithms have 
reported superiority over the classical HS in a number of do-
mains. However, each algorithm has its own limitations and 
many have criticized the methods’ approach used in adjusting 
these optimization parameters [10, 17, 20].  

The self-adaptive harmony search (SHS) algorithm is “an 
almost-parameter-free harmony search algorithm” [10]. In this 
method some of the parameters are automatically adjusted 
according to its self-consciousness. The PAR is decreased line-
arly with from 1.0 to 0.0 as a function of the iteration count 
that is bounded by MAXIMP. The BW on the other hand was 
replaced altogether and the new harmony is updated accord-
ing to the maximal and minimal values in the harmony 
memory (HM). It was indicated that such technique would 
result in the new harmony making better utilization of its own 
experiences. The BW is computed for each dimension variable 
based on the highest and lowest value of the HM for that di-
mension variable. The formulas used in SHS are given in Eq. 
(1) through (3). 
 

𝑡𝑟𝑖𝑎𝑙(𝑖) = 𝐻𝑀(𝑖𝑛𝑡(𝑟𝑛𝑑( ) × 𝐻𝑀𝑆 + 1))   … (1) 

𝑡𝑟𝑖𝑎𝑙(𝑖) = 𝑡𝑟𝑖𝑎𝑙(𝑖) + [max(𝐻𝑀 ) − 𝑡𝑟𝑖𝑎𝑙(𝑖)] × 𝑟𝑛𝑑[0,1)  … (2) 

𝑡𝑟𝑖𝑎𝑙(𝑖) = 𝑡𝑟𝑖𝑎𝑙(𝑖) − [𝑡𝑟𝑖𝑎𝑙(𝑖) − min(𝐻𝑀 )] × 𝑟𝑛𝑑[0,1)  … (3) 

 
The technique used in SHS would avert the need for any in-

itial setting involving the PAR and BW values. Based on a 
number of full-factorial experiments involving the harmony 
memory consideration rate (HMCR) and the HM size (HMS), 
it was found that a HMS size of around 50 and a HMCR value 
of 0.99 are the most suitable to use for a number of continuous 
optimization problems. The maximum iteration count for all 
the problems considered was set to a value of 100,000. 

The self-adaptive GHS (SGHS) algorithm [15] is based on 
the GHS algorithm [19] and employs a new improvisation 
scheme with an adaptive parameter tuning method. Three 
parameters are adjusted dynamically during the optimization 
process in SGHS, namely the HMCR, the PAR and the BW. It 
is assumed that the HMCR and PAR values are normally dis-
tributed in the range of [0.9,1.0] and [0.0,1.0] respectively with 
mean values HMCRm and PARm. It uses a standard devia-
tions of 0.01 for the HMCR and 0.05 for the PAR. The HMCRm 
and the PARm are initially set prior to starting the algorithm 
at 0.98 and 0.9 respectively. Then SGHS starts with a HMCR & 
PAR values generated according to the normal distributions of 
these two. After a specified number of iterations, referred to as 
learning period (LP), which was selected at a value of 100, 
both the HMCRm and the PARm are recalculated by averag-
ing all the recorded HMCR and PAR values during this period 
and then the procedure is repeated. It was mentioned that 
such approach would result in appropriate values that can be 
gradually learned to suit the particular problem and the par-
ticular phases of the search process. The dynamic value of the 
BW is set in a fashion that is similar to that used in the IHS 
algorithm, i.e. as function of the current iteration count and 
MAXIMP value and as given in Eq. (4). To sum up, the SGHS 
algorithm still requires the initial value setting of BWmin, 
BWmax, HMCRm, PARm and the new parameter LP. These 
parameters must be determined manually before starting the 
optimization process.  
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𝐵𝑊(𝑖𝑡𝑟) = 

{
𝐵𝑊   −

           

      
× 2𝑖𝑡𝑟  𝑖𝑓 𝑖𝑡𝑟 < 𝑀𝐴𝑋𝐼𝑀𝑃/2

𝐵𝑊                          𝑖𝑓 𝑖𝑡𝑟 ≥ 𝑀𝐴𝑋𝐼𝑀𝑃/2
  … (4) 

 
Another recent self-adaptive HS variant is the harmony 

search with adaptive pitch adjustment (HSASP) algorithm 
[20]. In this algorithm, the bandwidth value is adapted dy-
namically using a technique inspired from the velocity clamp-
ing in particle swarm optimization. Arguing that the simulta-
neous dynamic change of both the HMCR and the PAR can 
cause a twist of global and local search (a contradiction to the 
concept used in the SGHS algorithm), the HSASP algorithm 
uses a high fixed value of 0.995 for the HMCR parameter 
while the PAR, as in SHS, is decreased linearly from 1.0 to 0.0 
during the optimization process. It was indicated that a large 
HMCR value would increase convergence rate of the algo-
rithm in most cases and provides better performance [10, 18, 
19]. It was argued that the technique used in SHS [10] using 
the lowest and the highest values of the ith dimension variable 
in the HM, given previously in Eq. (1) through Eq. (3), would 
eliminate the benefits of the exploration of search space out-
side the current boundary confined within a minimum and a 
maximum current values and would result in non-uniform 
distribution of position of the new harmony. In the HSASP 
method the improvisation process also considers using the 
current high and low values of each dimension variable within 
the HM. However, the improvisation would introduce two 
new terms, the range and the value λ and as given in Eq. (5) 
through Eq. (8). The bandwidth parameter BW is replaced 
with λ×range where it is argued that stochastic oscillation in 
each dimension is restricted to the current range of harmony 
position and is regulated by the parameter λ with values rang-
ing from 0.2 to 0.8.  
 

𝑟𝑎𝑛𝑔𝑒(𝑖) = 𝑚𝑎𝑥(𝐻𝑀(𝑖)) − 𝑚𝑖𝑛 (𝐻𝑀(𝑖))  … (5) 

𝑡𝑟𝑖𝑎𝑙(𝑖) ± 𝜆 × 𝑟𝑎𝑛𝑔𝑒(𝑖) × 𝑟𝑛𝑑()   … (6) 

If trial(i)< xL(i) then trial(i)= xL (i)   … (7) 

If trial(i)> xU(i) then trial(i)= xU(i)   … (8) 

 
The proposed technique has shown to attain good results in 

comparison to other methods including SHS [10] and the clas-
sical HS [11]. However, it still requires several manual setting 
for the newly introduced parameter λ. The best values were 
found to be 0.3, 0.4 and 0.5 considering the problems selected. 
As for other parameters, the HMS was set at 50 with the 
memory initialized using the common uniform random initial-
ization and the maximum iteration count was set manually 
based on the problem dimensionality.  

There are two contradicting techniques to change the PAR 
in the methods introduced above. The PAR either starts from a 
minimum value and ends with a maximum one as in IHS, 
GHS and SGHS [15, 18, 19] or it starts from a maximum value 
and ends with a minimum one as in SHS and HSASP [10, 20]. 
Regardless of the technique, the PAR behavior is predeter-
mined in these methods to be monotonic and does not take 

into account the quality of solutions in the current HM. A 
larger value of the PAR would result in further modification to 
the newly created dimensional variable thereby enhancing the 
local exploitation ability of the algorithm, whereas a smaller 
value of the PAR would result in the new harmony vector to 
select its dimensional values by perturbing the corresponding 
values in the HM, thus enlarging the search area and diversity 
of the HM [10]. The main difference among these methods is 
choosing which one to take place first, local exploitation or 
enlarging the search area and diversity? i.e. start with large 
PAR value or small PAR value? There is no link between the 
“quality” of the current solutions and the PAR value setting. 

4 PROPOSED METHOD 

The proposed method utilizes the Best-to-Worst (BtW) ratio 
of the current HM. The concept of BtW was introduced earlier 
by the authors for the training of artificial neural networks 
using the HS algorithm [12, 21]. The words “best” and “worst” 
are part of the HS algorithm nomenclature whereby the algo-
rithm basically tries to find the “best” solution among a set of 
solutions stored in the HM by improvising new harmonies to 
replace those “worst” ones as in the algorithm given in Figure 
(3). At any time the HM would contain a number of solutions 
including a best solution and a worst solution in terms of their 
stored quality measures, i.e. fitness function values. With min-
imization problems in mind, the BtW value is a value in the 
range [0,1] and as given by the ratio of the current best har-
mony fitness value to the current worst harmony fitness value 
in HM. This is expressed in Eq. (9) where a higher BtW value 
in this case indicates that the quality of current HM solutions 
is approaching that of the current best. If maximization prob-
lems are considered however, then the problem could be 
treated as minimization one by using the inverse of the fitness 
function. In both cases a higher BtW value indicates that the 
quality of current HM solutions is approaching that of the cur-
rent best. 
 

𝐵𝑡𝑊 =
 ( ̅    )

 ( ̅     )
                   … (9) 

 
The PAR value in the proposed method is adjusted dynam-

ically based on the value of the current BtW ratio rather than 
the value of the current iteration count. This is shown in Fig-
ure (4) where as search progresses, the BtW value would even-
tually decrease owing to having better quality solutions in 
HM. This behavior is expressed in Eq. (10) and Eq. (11) where 
the PAR becomes a function of the BtW value and not the iter-
ation count. Unlike the methods introduced in the previous 
section, the PAR change is not monotonic and is not bound by 
a MAXIMP value. The PAR is to increase or decrease in re-
sponse to the quality of current solutions in the HM represent-
ed by the computed BtW ratio. 
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Figure (4) The dynamic setting of PAR in the proposed method 
 
 

𝑚𝑠𝑙𝑜𝑝𝑒 =
             

   
= 𝑃𝐴𝑅   − 𝑃𝐴𝑅           … (10) 

 

𝑃𝐴𝑅 = 𝑚𝑠𝑙𝑜𝑝𝑒 ∙ 𝐵𝑡𝑊 + 𝑃𝐴𝑅                    … (11) 

 
PARmax is set at the value of 1.0, as in many of the methods 

presented earlier, and PARmin is set at a small value that is 
greater than zero. Setting PARmin to zero might inhibit the 
pitch adjustment process completely in case of HM stagnation; 
a condition in which BtW becomes close to unity awing to 
having similar solutions in HM. If the BtW value decreases, 
indicating a range of different quality solutions, then the PAR 
value increases to reflect the local exploitation ability of the 
algorithm and cause further modifications to the newly creat-
ed harmony. On the other hand if the BtW value increases, 
indicating a higher quality solutions within the HM, then the 
PAR value decreases to enlarge search area and diversity by 
causing the values of the newly created harmony to be select-
ed by perturbing the corresponding values in the HM. 

The pitch-adjusting process is accomplished by using a dy-
namic bandwidth value (DBW) that considers each harmony 
vector component (dimension variable) separately and as giv-
en in Eq. (12) and Eq. (13).  
 

𝐴𝑐𝑡𝑖𝑣𝑒𝐵𝑊(𝑖) = 𝐶 ∙ 𝑆𝑡𝑑𝐷𝑒𝑣(𝑥  
 )                         … (12) 

𝐷𝐵𝑊(𝑖) = 𝑟𝑛𝑑(−𝐴𝑐𝑡𝑖𝑣𝑒 𝐵𝑊(𝑖), 𝐴𝑐𝑡𝑖𝑣𝑒 𝐵𝑊(𝑖))     … (13) 

 
The ActiveBW for the considered dimension variable is 

computed by calculating the standard deviation of the respec-
tive HM column. The DBW of the dimension variable is a ran-
dom value confined within the positive and negative range of 
the ActiveBW for that dimension variable. This is similar in 
concept to settings used in the SHS and the HSASP methods 
presented earlier in that it considers the current high and low 
values existing within the HM for each dimension variable. 
The standard deviation in this case represents how much vari-
ation exists from the average of each component vector value 

in the HM. A value of C>1.0 would extend the dynamic 
bandwidth value so that it would not eliminate the benefits of 
the exploration of search space outside current boundary con-
fined within a minimum and a maximum [20]. Based on a 
number of experiments, using a value of C=2.0 makes the per-
formance of our proposed algorithm comparable to those pre-
sented earlier.  

Termination in all other methods presented earlier is the 
same as that of the classical HS; specifying a maximum num-
ber of iterations as stipulated by MAXIMP value selection [10, 
15, 17, 20]. The proposed algorithm also uses this standard 
termination condition whereby the total number of optimiza-
tion cycles is bounded by using a MAXIMP value. The pro-
posed method however adds an additional termination condi-
tions that is “OR”ed with the standard one. With minimiza-
tion considered, if the current fitness function value of the best 
solution within HM is less than a very small value delta, then 
this would also signal termination. 

5 EMPIRICAL RESULTS 

The localization of the hippocampus in histological images 
is considered as a multimodal global continuous optimization 
problem whereby the algorithm tries to minimize the differ-
ence between the model and the object itself and as shown in 
Figure (1). It was stated earlier that this work is an early step 
prior to considering a full implementation on actual biomedi-
cal images. Tests were conducted using two multimodal 
benchmarking functions rather than actual biomedical images. 
The benchmarking optimization functions are shown in Figure 
(5) and Figure (6). In addition to the function’s 3D graph, 
which gives a visual idea about the function’s surface nature, 
the function’s equation, range and optimal value are also in-
cluded. The Generalized Schwefel 2.26 function is considered 
deceptive in that the global minimum is geometrically distant, 
over the parameter space, from the next best local minima. 
Therefore, the search algorithms are potentially prone to con-
vergence in the wrong direction. The Rastrigin function is a 
non-convex function used as a performance test problem for 
optimization algorithms. It is a typical example of non-linear 
multimodal function. This function is a fairly difficult problem 
due to its large search space and its large number of local min-
ima. These two multimodal functions have been commonly 
used as optimization problems in the evolutionary computa-
tion field [22, 23] and are characterized by having many local 
optima in addition to single global optima. The number of 
local optima increases exponentially with the dimension of the 
problem. This appears to be the most difficult test for optimi-
zation algorithms [22]. 
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Figure (5) Rastrigin’s multimodal benchmarking problem  

 
 

Figure (6) Generalized Schwefel 2.26 multimodal  

benchmarking problem 

 
 

The value settings for the HMS and the HMCR where in-
vestigated thoroughly in SHS and HSASP [3, 10] and common 
values are used for these two in the proposed method. With 
minimization problems in mind, fitness function values that 
are less than delta = 1.0E-50 are considered to be practically 
zero and would cause immediate termination otherwise ter-
mination is bound by the MAXIMP value. Table (1) summa-
rizes the parameter settings used in the proposed DSHS. 
 

Table (1) Parameter settings for DSHS 

N HMS HMCR PARmin PARmax MAXIMP 

100 50 0.99 0.1 1.0 6.0E+05 

 
In each test the proposed DSHS algorithm was run for 30 

times and the bootstrap-t statistical analyses were carried out 
with 95% confidence interval for all test functions to verify the 
method. Table (2), given at the end of the paper, shows the 
results of the proposed method in comparison to others. The 
ODE results column in this table represents the results of the 
opposition-based differential evolution (ODE) SGO method 
[24] and was obtained from [20]. ODE is a recent variant of DE 
and represents a state-of-the-art evolutionary algorithm. In 
case of HSASP, the reported results are associated with differ-
ent λ value and these are shown in square brackets in its re-
spective column in the table. The best-attained value with its 
associated iteration count and the last iteration for which the 
proposed DSHS algorithm terminated are given in the last 
column. 

6 DISCUSSION 

As given in Table (2), the optimization results obtained us-
ing the proposed method were superior in comparison to oth-
er SGO methods. In the Rastrigin problem the proposed DSHS 
method was able to terminate earlier based on the opted preci-
sion for the minimum fitness value (delta <= 1.0E-50), which 
could be practically considered as zero value. In all of the self-
adaptive rival methods considered in this work, the MAXIMP 
value selection must guarantee that the method would be able 
to converge to a good solution in a number of optimization 
cycles that is less than MAXIMP. Such value could be manual-
ly selected based on “experience” however it could be also 
obtained empirically based on actual testing for the problems 
considered.  

In order to explain the behavior exhibited by PAR in rela-
tion with BtW, Figure (7) shows the convergence graph ob-
tained for one of the experiments for the Rastrigin benchmark-
ing problem. Graphs (a) shows the PAR value while graph (b) 
shows the acceptance rate percentage. Both graphs are drawn 
against accepted improvisations. Because these graphs contain 
condensed data due to the large number of iterations, a trend-
line is included to show the general behavior where it is plot-
ted as a sixth order polynomial. As expressed earlier in Eq. 
(11), PAR changes dynamically in response to the current val-
ue of BtW and is inversely proportional to BtW and as shown 
earlier in Figure (4). The increase in PAR values at the begin-
ning of the optimization process indicates that the HM con-
tains a wider range of solutions having dispersed fitness val-
ues. PAR is increased to trigger the local exploitation ability of 
the algorithm and cause further modifications to the newly 
created harmony using the DBW values based on the current 
active bandwidth. The next decline in PAR values was in re-
sponse to having higher BtW values. This indicates that the 
quality of the current solutions in the HM is becoming close to 
that of the current best solution. In response the PAR value is 
decreased almost to the value of PARmin in order to enlarge 
search area and diversity by causing the values of the newly 
created harmony to be selected by perturbing the correspond-
ing values in the HM. This has resulted in a higher improvisa-
tion acceptance rate as evident in the matching response 
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shown in graph (b) of Figure (7).   
Considering the problem of localization of the hippocam-

pus in histological images, the more recent method discussed 
in [2] have indicated that using the DE SGO method gave bet-
ter results than those obtained using PSO in [4]. In Table (2), 
the proposed DSHS algorithm performed much better than the 
state of the art ODE (which is based on DE). This work is an 
early preliminary step towards the implementation of the 
proposed DSHS algorithm in the localization of the hippo-
campus in biomedical images. The results obtained clearly 
indicate that the proposed method is a potential candidate for 
implementation of localization of the hippocampus in biomed-
ical images. 

 

 
(a) 

 

 
(b) 

Figure (7) The convergence graph for the Rastrigin’s  

multimodal benchmarking problem 

7 CONCLUSIONS 

The texture features of the hippocampus could give better 
differentiation between Alzheimer’s disease and normal con-
trols. The localization of the hippocampus structure in MRI 
histological images is considered as a multimodal global con-
tinuous optimization problem that using stochastic global op-
timization methods. This work represents a preliminary re-
search towards the development of an alternative dynamic 
and self-adaptive stochastic global optimization method that is 
based on the harmony search algorithm. Testing considered 
two commonly used multimodal global continuous optimiza-
tion benchmarking problem rather than actual hippocampus 

biomedical images. Results indicated the superiority of the 
proposed method in comparison to some recent rival methods. 
In addition, the proposed algorithm dynamic and self-
adaptive features have resulted in a competitive performance 
in comparison to other harmony search based methods having 
self-adaptive features. Future work should consider the pro-
posed method as a potential candidate for full implementation 
of localization of the hippocampus in biomedical images. 
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Table (2). Optimization results of the proposed DSHS method against other SGO methods 

Multimodal  
Benchmarking 

Function 
HSASP [20] SHS [10] SGHS [15] ODE [24] 

Proposed Method 

DSHS 

Best value 
@iteration, 
Termina-

tion 

GSchwefel 2.26 1.866E+00 
 (1.348E+00) 

[λ=0.2] 

1.459E+01 
(7.253E+00) 

3.57E+01 
(8.60E+01) 

3.243E+04 
(5.508E+02) 

8.18E-01 
(7.19E-02) 

6.79E-01 
586,731 

MAXIMP 

Rastrigin 1.485E+00 
 (8.498E-01) 

[λ=0.3] 

2.040E+01 
(3.107E+00) 

1.24E+01 
(2.64E+00) 

6.009E+02 
(6.880E+01) 

0 
(0) 

 

0 
214,548 
214,548 
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